

Numerical solution for the hyperbolic heat conduction problems in the radial–spherical coordinate system using a hybrid Green's function method

Tzer-Ming Chen*, Ching-Chih Chen

Department of Vehicle Engineering, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao East Road, Taipei 10643, Taiwan, ROC

ARTICLE INFO

Article history:

Received 20 August 2009

Received in revised form

20 January 2010

Accepted 20 January 2010

Available online 26 February 2010

Keywords:

Hyperbolic heat conduction

Green's function

Radial–spherical coordinate system

ABSTRACT

The hyperbolic heat conduction problems in the radial–spherical coordinate system are investigated by the hybrid Green's function method. The present method combines the Laplace transform for the time domain, Green's function for the space domain and ε -algorithm acceleration method for fast convergence of the series solution. Three different examples problems have been analyzed by the present method. It is found that the present method does not exhibit numerical oscillations at the wave front and the numerical solutions are stable.

© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

Study of the heat conduction problem in cylindrical and spherical coordinate systems has received considerable interest, because of its wide industrial applicability, such as rocket wall, oil reservoirs, and boilers. And for situations involving energy sources such as laser and microwave with extremely short duration or very high frequency and very high temperature gradients, the problems of hyperbolic heat conduction are considered. Researches in the field have been conducted by many investigators [1–18]. The major difficulty encountered in the numerical solutions of hyperbolic heat conduction problems is the suppression of the numerical oscillations in vicinity of sharp discontinuities [11]. However, most the previous works were restricted to analyzing the problem in the rectangular coordinate system. The analytical and numerical solutions of the hyperbolic heat conduction problems in the spherical coordinate system can be found in the literature, J.Y. Lin and H.T. Chen [19], C.S. Tsai, C.Y. Lin and C.I. Hung [20], Fangming Jiang and Antonio C. M. Sousa [21] R. Shirmohammadi [22], and R. Shirmohammadi and A. Moosaie [23].

Hence the present study proposes a hybrid Green's function method to analyze the hyperbolic heat conduction problems in the radial–spherical coordinate system. The Laplace transfer method is used to remove the time-dependent terms from the governing equation, and then the s -domain dimensionless temperature function is obtained by the Green's function scheme. Finally, the

time-domain dimensionless temperature can be determined by the numerical inversion of the Laplace transform and the ε -algorithm acceleration method.

2. Analysis

Consider the problems of hyperbolic heat conduction in spherical coordinate system. The hyperbolic heat conduction equation is given by

$$\frac{1}{C^2} \frac{\partial^2 T}{\partial t^2} + \frac{1}{\alpha} \frac{\partial T}{\partial t} = \frac{\partial^2 T}{\partial r^2} + \frac{2}{r} \frac{\partial T}{\partial r} + \frac{1}{r^2} \frac{\partial}{\partial \mu} \left[(1 - \mu^2) \frac{\partial T}{\partial \mu} \right] + \frac{1}{r^2(1 - \mu^2)} \frac{\partial^2 T}{\partial \phi^2} \quad (1)$$

initial and boundary condition

$$T(\mathbf{r}, t) = F(\mathbf{r}), \frac{\partial T}{\partial t}(\mathbf{r}, t) = H(\mathbf{r}) \quad \text{for } t = 0, \quad (2)$$

$$k_i \frac{\partial T}{\partial n_i} + h_i(T - T_0) = f_i(\mathbf{r}, t) \quad \text{on } S_i \quad (2)$$

For convenience of numerical analysis, let us define by the following dimensionless variables

$$\xi = \frac{C^2 t}{2\alpha} \quad (3)$$

* Corresponding author.

E-mail address: tmchen@ntut.edu.tw (T.-M. Chen).

Nomenclature		
Bi	Biot number, $\frac{hL}{k}$	
C	propagation velocity of thermal wave	
c_p	specific heat	
f_r	reference heat flux	
F	initial condition function	
H	initial condition function	
G	Green's function	
h	thermal convection coefficient	
J_v	Bessel function of the first kind order v	
k	thermal conductivity	
n	outward-drawn normal vector to the boundary surface	
P_n	Legendre polynomial	
r	coordinate	
\mathbf{r}	space variable	
S_i	boundary surface	
s	Laplace transform parameter	
sum	summation of a series of function	
		<i>Greek letters</i>
		α thermal diffusivity, $\frac{k}{\rho c_p}$
		η dimensionless length, $\frac{Cr}{2\alpha}$
		θ dimensionless temperature, $\frac{(T - T_0)kc}{\alpha f_r}$
		ϕ coordinate
		φ coordinate
		ρ density
		ε ε -algorithm parameter
		μ coordinate, $\cos \varphi$
		ξ dimensionless time, $\frac{C^2 t}{2\alpha}$
		<i>Superscript</i>
		$-$ the Laplace transform
		$^{\wedge}$ dimensionless form

$$\eta = \frac{Cr}{2\alpha}$$

$$(4) \quad \bar{\theta}(\mathbf{r}, s) = \bar{G}(\mathbf{r}, s | \mathbf{r}_0, s) [(s+2)\bar{F} + \bar{H}] + \sum_{i=1}^S \int_{S_i} \bar{G}(\mathbf{r}, s | \mathbf{r}_0, s) |_{r_0=r_i} \bar{f}_i(\mathbf{r}, s) dS_i$$

$$(5) \quad \theta = \frac{kC(T - T_0)}{\alpha f_r}$$

The resulting equation becomes

$$(6) \quad \frac{\partial^2 \theta}{\partial \eta^2} + \frac{1}{\eta} \frac{\partial \theta}{\partial \eta} + \frac{1}{\eta^2} \frac{\partial}{\partial \mu} \left[(1 - \mu^2) \frac{\partial \theta}{\partial \mu} \right] + \frac{1}{\eta^2 (1 - \mu^2)} \frac{\partial \theta}{\partial \phi^2} = \frac{\partial^2 \theta}{\partial \xi^2} + 2 \frac{\partial \theta}{\partial \xi}$$

initial and boundary condition

$$(7) \quad \theta(\eta, \mu, \phi, 0) = \bar{F}, \quad \frac{\partial \theta}{\partial \xi}(\eta, \mu, \phi, 0) = \bar{H}, \quad \frac{\partial \theta}{\partial \eta} + Bi\theta = \bar{f}_i \text{ on } S_i.$$

3. Numerical scheme

To remove the ξ -dependent terms, taking the Laplace transform of equation (6) with respect to ξ gives

$$(8) \quad \frac{\partial^2 \bar{\theta}}{\partial \eta^2} + \frac{1}{\eta} \frac{\partial \bar{\theta}}{\partial \eta} + \frac{1}{\eta^2} \frac{\partial}{\partial \mu} \left[(1 - \mu^2) \frac{\partial \bar{\theta}}{\partial \mu} \right] + \frac{1}{\eta^2 (1 - \mu^2)} \frac{\partial^2 \bar{\theta}}{\partial \phi^2} - (s^2 + 2s)\bar{\theta} + (s+2)\bar{F} + \bar{H} = 0$$

and boundary condition $(\partial \bar{\theta} / \partial \eta) + Bi\bar{\theta} = \bar{f}_i$ on S_i

To solve the above s-domain heat conduction problem we consider the following auxiliary problem for the same region

$$(9) \quad \frac{\partial^2 \bar{G}}{\partial \eta^2} + \frac{1}{\eta} \frac{\partial \bar{G}}{\partial \eta} + \frac{1}{\eta^2} \frac{\partial^2 \bar{G}}{\partial \phi^2} + \frac{\partial^2 \bar{G}}{\partial \xi^2} + \delta(\mathbf{r} - \mathbf{r}_0) - (s^2 + 2s)\bar{G} = 0$$

$$\frac{\partial \bar{G}}{\partial \eta} + Bi\bar{G} = 0, \text{ on } S_i$$

The Green's function $\bar{G}(\mathbf{r}, s | \mathbf{r}_0, s)$ is determined from equation (9) derived by the method of separated variables [24] and we obtain the s-domain solution $\bar{\theta}(\mathbf{r}, s)$ of the heat conduction problem, equation (8) in terms of the Green's function $\bar{G}(\mathbf{r}, s | \mathbf{r}_0, s)$ as

Where S_i refers to the boundary surface S_i of the region R , $i = 1, 2, 3, \dots, S$ and S in number continuous boundary surfaces.

The dimensionless temperature $\theta(\mathbf{r}, \xi)$ can be determined by the numerical inversion of the Laplace transform and the ε -algorithm acceleration method [25]. For this paper, the series solution is taken as 600 terms in a note-book computer.

The ε -algorithm acceleration method, for a non-monotonous $f_N(t) = \sum_{k=1}^N u_k$, the ε -algorithm acceleration convergence method is expressed as

Let $N = 2q + 1, q \in N$,

$$(11) \quad \text{sum}_m = \sum_{k=1}^N u_k$$

and

$$(12) \quad \varepsilon_{p+1}^{(m)} = \varepsilon_{p-1}^{(m+1)} + \frac{1}{(\varepsilon_p^{(m+1)} - \varepsilon_p^{(m)})}, \quad \varepsilon_0^{(m)} = 0, \quad \varepsilon_1^{(m)} = \text{sum}_m$$

then the sequence $\varepsilon_1^{(1)}, \varepsilon_3^{(1)}, \varepsilon_5^{(1)}, \dots, \varepsilon_{2q+1}^{(1)} = \varepsilon_N^{(1)}$, converges to $f_\infty(t)$.

4. Results and discussion

Example 1. One-dimensional region $0 \leq \eta \leq 1$, a solid sphere problem prescribed wall temperature. The governing equation, the initial and boundary conditions for this case are given by

$$(13) \quad \frac{1}{\eta} \frac{\partial^2}{\partial \eta^2}(\eta\theta) = 2 \frac{\partial \theta}{\partial \xi} + \frac{\partial \theta^2}{\partial \xi^2}, \quad 0 \leq \eta \leq 1$$

$$(14) \quad \theta(\eta, 0) = 0, \quad \frac{\partial \theta}{\partial \xi}(\eta, 0) = 0$$

$$(15) \quad \theta(1, \xi) = 1,$$

The Green's function is given by

$$\bar{G}(\eta, s|\eta_0, s) = \frac{2}{\eta\eta_0} \sum_{m=1}^{\infty} \frac{\sin(\beta_m\eta)\sin(\beta_m\eta_0)}{(s^2 + 2s + \beta_m^2)} \quad (16)$$

Where β_m 's are the positive roots of $\sin(\beta_m) = 0$

The $\theta(\eta, s)$ is obtained as

$$\bar{\theta}(\eta, s) = \frac{2}{\eta} \sum_{m=1}^{\infty} \frac{\beta_m(-1)^{m+1}\sin(\beta_m\eta)}{s[\beta_m^2 + s^2 + 2s]} \quad (17)$$

Fig. 1 shows the temperature distribution of the one-dimensional a solid sphere problem on hyperbolic heat conduction with a prescribed wall temperature at time $\xi = 0.25, \xi = 0.5, \xi = 0.75$ and $\xi = 0.875$. It can be seen that the temperature increases as the time increases because of the wave type heat transfer of the non-Fourier law and the solid sphere geometric structure.

Example 2. One-dimensional region $1 \leq \eta \leq 2$, hollow sphere problem, the initial and boundary conditions for this case are given by

$$\theta(\eta, 0) = 0, \quad \frac{\partial\theta(\eta, 0)}{\partial\xi} = 0 \quad (18)$$

$$\theta(1, \xi) = 1, \quad \theta(2, \xi) = 0 \quad (19)$$

The Green's function can be obtained

$$\bar{G}(\eta, s|\eta_0, s) = \frac{2}{\eta\eta_0} \sum_{m=1}^{\infty} \frac{\sin[\beta_m(\eta - 1)]\sin[\beta_m(\eta_0 - 1)]}{(s^2 + 2s + \beta_m^2)} \quad (20)$$

Where β_m 's are the positive roots of $\sin(\beta_m) = 0$.

The $\theta(\eta, s)$ is obtained as

$$\bar{\theta}(\eta, s) = \frac{2}{\eta} \sum_{m=1}^{\infty} \frac{\beta_m \sin[\beta_m(\eta - 1)]}{(s^3 + 2s^2 + s\beta_m^2)} \quad (21)$$

Fig. 2 represents the temperature variation of the one-dimensional hollow sphere problem on hyperbolic heat conduction with a prescribed wall temperature at time $\xi = 0.25, \xi = 0.5, \xi = 0.75$,

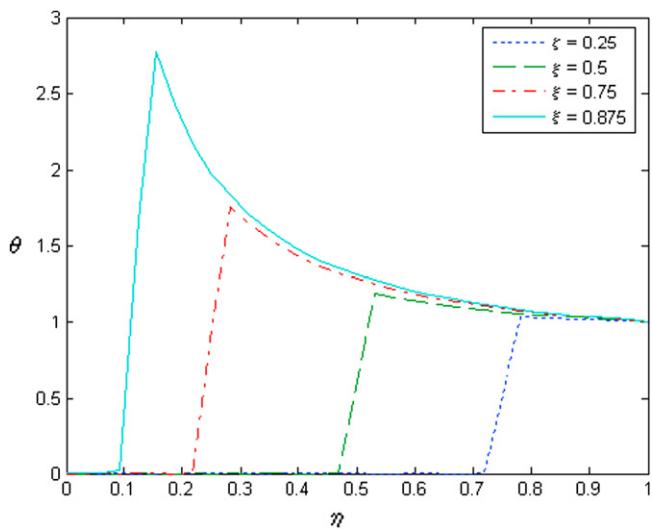


Fig. 1. The temperature distribution of the one-dimensional solid sphere problem for hyperbolic heat conduction with a prescribed wall temperature at time $\xi = 0.25, \xi = 0.5, \xi = 0.75$ and $\xi = 0.875$.

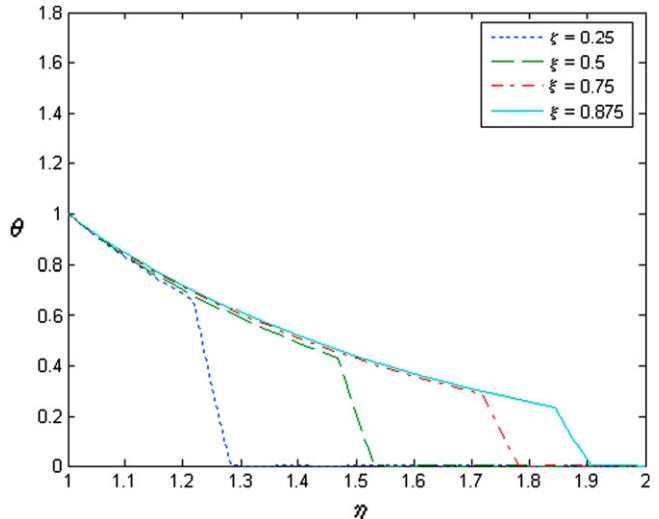


Fig. 2. The temperature variation of the one-dimensional hollow sphere problem on hyperbolic heat conduction with a prescribed wall temperature at time $\xi = 0.25, \xi = 0.5, \xi = 0.75$ and $\xi = 0.875$.

$\xi = 0.75$ and $\xi = 0.875$. It can be seen that at small time, a wave front advances to the right and the present method solution does not exhibit numerical oscillations at the wave front.

Example 3. One-dimensional region $1 \leq \eta \leq 2$, hollow sphere problem, the initial and boundary conditions for this case are given by

$$\theta(\eta, 0) = 0, \quad \frac{\partial\theta}{\partial\xi}(\eta, 0) = 0 \quad (22)$$

$$\theta(1, \xi) = 1 \quad \frac{\partial\theta}{\partial\eta}(2, \xi) = 0 \quad (23)$$

The Green's function is given by

$$\bar{G}(\eta, \zeta, s|\eta_0, \zeta_0, s) = \frac{2}{\eta\eta_0} \sum_{m=1}^{\infty} \frac{\sin[\beta_m(\eta - 1)]\sin[\beta_m(\eta_0 - 1)]}{(\beta_m^2 + s^2 + 2s)} \quad (24)$$

Where β_m 's are the positive roots of $\cos(\beta_m) = 0$.

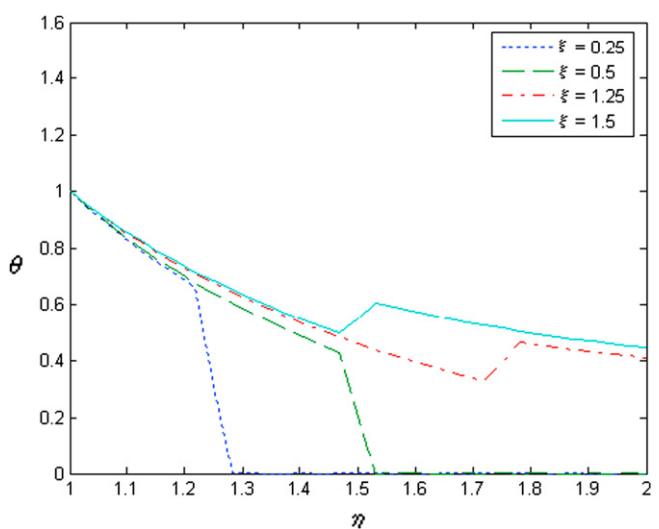


Fig. 3. The one-dimensional region $1 \leq \eta \leq 2$, hollow sphere problem of dimensionless temperature for (a) $\xi = 0.25$, (b) $\xi = 0.5$, (c) $\xi = 1.25$ and (d) $\xi = 1.5$.

The $\theta(\eta, \zeta, s)$ is obtained as

$$\bar{\theta}(\eta, \zeta, s) = \frac{2}{\eta} \sum_{m=1}^{\infty} \frac{\beta_m \sin[\beta_m(\eta - 1)]}{s(\beta_m^2 + s^2 + 2s)} \quad (25)$$

Fig. 3 shows the one-dimensional region $1 \leq \eta \leq 2$, hollow sphere problem of dimensionless temperature for time (a) $\xi = 0.25$, (b) $\xi = 0.5$, (c) $\xi = 1.25$ and (d) $\xi = 1.5$. At small time there is a wave front advancing to the right, and at later time, the wave reflected, there is a wave front advancing to the left.

5. Conclusions

The hybrid method has shown success in investigating the hyperbolic heat conduction problem in the radial–spherical coordinate system. To illustrate efficiency of the method, three different examples have been analyzed. It is found from these examples that the present method does not exhibit numerical oscillations at the wave front and the numerical solutions are stable.

References

- [1] Tsai-tse Kao, Non-Fourier heat conduction in thin surface layers. *Journal of Heat Transfer* 99 (May 1977) 343–345.
- [2] K.J. Baumeister, T.D. Hamill, Hyperbolic heat conduction equation—a solution for the semi-infinite body problem. *ASME Journal of Heat Transfer* 91 (1969) 543–548.
- [3] Y. Taitel, On the parabolic, hyperbolic and discrete formulation of the heat conduction equation. *International Journal of Heat Mass Transfer* 15 (1984) 369–371.
- [4] M.N. Ozisik, B. Vick, Propagation and reflection of thermal waves in a finite medium. *International Journal of Heat Mass Transfer* 27 (1984) 1845–1854.
- [5] C.Y. Wu, Integral equation solution for hyperbolic heat conduction with surface radiation. *International Communications in Heat and Mass Transfer* 15 (1988) 365–374.
- [6] G.F. Carey, M. Tai, Hyperbolic heat transfer with reflection. *Numerical Heat Transfer* 5 (1982) 309–327.
- [7] D.E. Glass, M.N. Ozisik, D.S. McRae, B. Vick, On the numerical solution of hyperbolic heat conduction. *Numerical Heat Transfer* 8 (1985) 497–504.
- [8] K.K. Tamma, S.B. Railkar, Specially tailored transfinite-element formulations for hyperbolic heat conduction involving non-Fourier effects. *Numerical Heat Transfer, Part B* 15 (1989) 211–226.
- [9] K.K. Tamma, J.F. D'Costa, Transient modeling analysis of hyperbolic heat conduction problems employing mixed implicit explicit method. *Numerical Heat Transfer, Part B* 19 (1991) 49–68.
- [10] H.Q. Yang, Characteristics-based, high-order accurate and nonoscillatory numerical method for hyperbolic heat conduction. *Numerical Heat Transfer, Part B* 18 (1990) 221–241.
- [11] H. T. Chen, J.Y. Lin, Numerical analysis for hyperbolic heat conduction. *International Journal of Heat Mass Transfer* 36 (11) (1993) 2891–2898.
- [12] D.E. Glass, M.N. Ozisik, B. Vick, Hyperbolic heat conduction with surface radiation. *International Journal of Heat Mass Transfer* 28 (1985) 1823–1830.
- [13] W.K. Yeung, T.L. Tung, A numerical scheme for non-Fourier heat conduction, part I: one-dimensional problem formulation and applications. *Numerical Heat Transfer, Part B* 33 (1998) 215–233.
- [14] H.Q. Yang, Solution of two-dimensional hyperbolic heat conduction by high-resolution numerical methods, in: AIAA, 27th, Thermophysics Conference, July 6–8, Nashville, TN, 1992, (AIAA, 92-2937).
- [15] H.T. Chen, J.Y. Lin, Numerical solution of two-dimensional nonlinear hyperbolic heat conduction problem. *Numerical Heat Transfer, Part B* 25 (1994) 287–307.
- [16] S.H.W. Shen, A numerical solution of two-dimensional hyperbolic heat conduction with non-linear boundary conditions. *International Journal of Heat Mass Transfer* 39 (2003) 499–507.
- [17] J.S. Loh, I.A. Azid, K.N. Seetharamu, G.A. Quadir, Fast transient thermal analysis of Fourier and non-Fourier heat conduction. *International Journal of Heat Mass Transfer* 50 (2007) 4400–4408.
- [18] T.M. Chen, A hybrid Green's function method for the hyperbolic heat conduction problems. *International Journal of Heat Mass Transfer* 52 (2009) 4273–4278.
- [19] J.Y. Lin, H.T. Chen, Numerical solution of hyperbolic heat conduction in cylindrical and spherical systems. *Applied Mathematical Modeling* 18 (July, 1994) 384–390.
- [20] C.S. Tsai, Y.C. Lin, C.I. Hung, A study on the non-Fourier effects in spherical media due to sudden temperature changes on the surface. *Heat Mass Transfer* 41 (2005) 709–716.
- [21] Fangming Jiang, Antonio C.M. Sousa, Analytical solution for hyperbolic heat conduction in a hollow sphere. *Journal of Thermophysics and Heat Transfer* 19 (2005) 595–598.
- [22] R. Shirmohammadi, Temperature transients in spherical medium irradiated by laser pulse. *International Communications in Heat and Mass Transfer* 35 (2008) 1017–1023.
- [23] R. Shirmohammadi, A. Moosaie, Non-Fourier heat conduction in a hollow sphere with periodic surface heat flux, *International Communications in Heat and Mass Transfer*, 36 (October, 2009) 827–883.
- [24] M.N. Ozisik, *Heat Conduction*. John Wiley & Sons Inc, New York, 1980, pp. 144–193.
- [25] G. Honig, U. Hirdes, A method for the numerical inversion of Laplace transform. *Journal of Computational and Applied Mathematics* 10 (1984) 113–132.